Cara Mengakses dan Pemrograman Sensor Gyroscope dan Accelerometer MPU6050 Menggunakan Arduino Uno

Sedang Trending 7 bulan yang lalu

Arduino Indonesia bakal berbagi tentang Cara Mengakses dan Pemrograman Sensor Gyroscope dan Accelerometer MPU6050 Menggunakan Arduino Uno. Pada percobaan kali ini kita bakal coba menggunakan Sensor Gyroscope dan Accelerometer MPU6050 untuk mendapatkan nilai yaw, pitch, dan roll. Pitch adalah rotasi ke axis-x, roll adalah rotasi ke axis-y, dan yaw adalah nilai rotasi ke axis-z. Hasil nan didapatkan pada percobaan ini bakal ditampilkan pada corak 3D.

Berikut ini adalah Schematics sketsa dari Sensor Gyroscope dan Accelerometer MPU6050 Menggunakan Arduino Uno 

Berikut ini adalah Hardware nan dibutuhkan :
1. Arduino Uno R3 >>> BELI DISINI
2. Sensor Gyroscope dan Accelerometer MPU6050 >>> BELI DISINI
3. Kabel Jumper Secukupnya >>> BELI DISINI

/***************************

Cara Mengakses dan Pemrograman Sensor Gyroscope dan Accelerometer MPU6050 Menggunakan Arduino Uno

Oleh: Arduino Indonesia
Website: www.arduinoindonesia.id
Toko Online: www.workshopelectronics3in1.com
Blog: mycoding.id

Copyright @2020

****************************/
#include "I2Cdev.h"
#include "MPU6050_6Axis_MotionApps20.h"
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
#endif

MPU6050 mpu;

#define OUTPUT_READABLE_YAWPITCHROLL

#define LED_PIN 13
bool blinkState = false;

bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };

volatile bool mpuInterrupt = false;

void dmpDataReady()
{
  mpuInterrupt = true;
}

void setup()
{
  Serial.begin(115200);
  while (!Serial);
  #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
      Wire.begin();
      TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)
  #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
      Fastwire::setup(400, true);
  #endif

  // initialize device
  Serial.println(F("Initializing I2C devices..."));
  mpu.initialize();

  // verify connection
  Serial.println(F("Testing device connections..."));
  Serial.println(mpu.testConnection() ? F("MPU6050 connection successful"): F("MPU6050 connection failed"));

  // wait for ready
  Serial.println(F("\nSend any character to begin DMP programming and demo: "));
  while (Serial.available() && Serial.read()); // empty buffer
  while (!Serial.available());                 // wait for data
  while (Serial.available() && Serial.read()); // empty buffer again

  // load and configure the DMP
  Serial.println(F("Initializing DMP..."));
  devStatus = mpu.dmpInitialize();

  // supply your own gyro offsets here, scaled for min sensitivity
  mpu.setXGyroOffset(220);
  mpu.setYGyroOffset(76);
  mpu.setZGyroOffset(-85);
  mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

  // make sure it worked (returns 0 if so)
  if (devStatus == 0)
  {
    // turn on the DMP, now that it's ready
    Serial.println(F("Enabling DMP..."));
    mpu.setDMPEnabled(true);

    // enable Arduino interrupt detection
    Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
    attachInterrupt(0, dmpDataReady, RISING);
    mpuIntStatus = mpu.getIntStatus();

    // set our DMP Ready flag so the main loop() function knows it's okay to use it
    Serial.println(F("DMP ready! Waiting for first interrupt..."));
    dmpReady = true;

    // get expected DMP packet size for later comparison
    packetSize = mpu.dmpGetFIFOPacketSize();
  }
  else
  {
    // ERROR!
    // 1 = initial memory load failed
    // 2 = DMP configuration updates failed
    // (if it's going to break, usually the code will be 1)
    Serial.print(F("DMP Initialization failed (code "));
    Serial.print(devStatus);
    Serial.println(F(")"));
  }

  // configure LED for output
  pinMode(LED_PIN, OUTPUT);
}

void loop()
{
  if (!dmpReady) return;
  while (!mpuInterrupt && fifoCount < packetSize)
  {
    
  }

  // reset interrupt flag and get INT_STATUS byte
  mpuInterrupt = false;
  mpuIntStatus = mpu.getIntStatus();

  // get current FIFO count
  fifoCount = mpu.getFIFOCount();

  // check for overflow (this should never happen unless our code is too inefficient)
  if ((mpuIntStatus & 0x10) || fifoCount == 1024)
  {
    // reset so we can continue cleanly
    mpu.resetFIFO();
    Serial.println(F("FIFO overflow!"));

    // otherwise, check for DMP info ready interrupt (this should happen frequently)
  }
  else if (mpuIntStatus & 0x02)
  {
    // wait for correct available info length, should be a VERY short wait
    while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

    // read a packet from FIFO
    mpu.getFIFOBytes(fifoBuffer, packetSize);
        
    // track FIFO count here in case there is > 1 packet available
    // (this lets us immediately read more without waiting for an interrupt)
    fifoCount -= packetSize;

    #ifdef OUTPUT_READABLE_QUATERNION
    // display quaternion values in easy matrix form: w x y z
    mpu.dmpGetQuaternion(&q, fifoBuffer);
    Serial.print("quat\t");
    Serial.print(q.w);
    Serial.print("\t");
    Serial.print(q.x);
    Serial.print("\t");
    Serial.print(q.y);
    Serial.print("\t");
    Serial.println(q.z);
    #endif

    #ifdef OUTPUT_READABLE_EULER
    // display Euler angles in degrees
    mpu.dmpGetQuaternion(&q, fifoBuffer);
    mpu.dmpGetEuler(euler, &q);
    Serial.print("euler\t");
    Serial.print(euler[0] * 180/M_PI);
    Serial.print("\t");
    Serial.print(euler[1] * 180/M_PI);
    Serial.print("\t");
    Serial.println(euler[2] * 180/M_PI);
    #endif

    #ifdef OUTPUT_READABLE_YAWPITCHROLL
    // display Euler angles in degrees
    mpu.dmpGetQuaternion(&q, fifoBuffer);
    mpu.dmpGetGravity(&gravity, &q);
    mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
    Serial.print("ypr\t");
    Serial.print(ypr[0] * 180/M_PI);
    Serial.print("\t");
    Serial.print(ypr[1] * 180/M_PI);
    Serial.print("\t");
    Serial.println(ypr[2] * 180/M_PI);
    #endif

    #ifdef OUTPUT_READABLE_REALACCEL
    // display real acceleration, adjusted to remove gravity
    mpu.dmpGetQuaternion(&q, fifoBuffer);
    mpu.dmpGetAccel(&aa, fifoBuffer);
    mpu.dmpGetGravity(&gravity, &q);
    mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
    Serial.print("areal\t");
    Serial.print(aaReal.x);
    Serial.print("\t");
    Serial.print(aaReal.y);
    Serial.print("\t");
    Serial.println(aaReal.z);
    #endif

    #ifdef OUTPUT_READABLE_WORLDACCEL
    // display initial world-frame acceleration, adjusted to remove gravity
    // and rotated based on known orientation from quaternion
    mpu.dmpGetQuaternion(&q, fifoBuffer);
    mpu.dmpGetAccel(&aa, fifoBuffer);
    mpu.dmpGetGravity(&gravity, &q);
    mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
    mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
    Serial.print("aworld\t");
    Serial.print(aaWorld.x);
    Serial.print("\t");
    Serial.print(aaWorld.y);
    Serial.print("\t");
    Serial.println(aaWorld.z);
    #endif
    
    #ifdef OUTPUT_TEAPOT
    // display quaternion values in InvenSense Teapot demo format:
    teapotPacket[2] = fifoBuffer[0];
    teapotPacket[3] = fifoBuffer[1];
    teapotPacket[4] = fifoBuffer[4];
    teapotPacket[5] = fifoBuffer[5];
    teapotPacket[6] = fifoBuffer[8];
    teapotPacket[7] = fifoBuffer[9];
    teapotPacket[8] = fifoBuffer[12];
    teapotPacket[9] = fifoBuffer[13];
    Serial.write(teapotPacket, 14);
    teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
    #endif

    // blink LED to indicate activity
    blinkState = !blinkState;
    digitalWrite(LED_PIN, blinkState);
  }
}

Setelah Program diatas di upload, silahkan buka Serial Monitor. Maka, bakal tampil hasil Kondisi nan di inginkan.

Katalog produk arduino, cek dibawah ini.

Selengkapnya
Sumber Programming dan Teknologi
Programming dan Teknologi